Essential role of beta-1,4-galactosyltransferase 2 during medaka (Oryzias latipes) gastrulation

نویسندگان

  • Yasuhiro Tonoyama
  • Daisuke Anzai
  • Atsushi Ikeda
  • Shinako Kakuda
  • Masato Kinoshita
  • Toshisuke Kawasaki
  • Shogo Oka
چکیده

Glycans are known to play important roles in vertebrate development; however, it is difficult to analyze in mammals because it takes place in utero. Therefore, we used medaka (Oryzias latipes) to clarify the roles of glycans during vertebrate development. beta-1,4-Galactosyltransferase is one of the key enzymes in the biosynthesis of the lactosamine structures that are commonly found on glycoproteins and glycolipids. Here, we show the essential role of beta4GalT2 during medaka development. Depletion of beta4GalT2 by morpholino antisense oligonucleotide injection resulted in significant morphological defects, such as shortening of the anterior-posterior axis, cyclopia, impaired somite segmentation, and head hypoplasia. In situ hybridization analyses revealed that the loss of beta4GalT2 led to defective anterior-posterior axis elongation during gastrulation without affecting organizer formation. Furthermore, a cell tracing experiment demonstrated that beta4GalT2 knockdown mainly affects mediolateral cell intercalation, which contributes to anterior-posterior axis elongation. A cell transplantation experiment indicated that glycans are produced by beta4GalT2 cell-autonomously during gastrulation. beta4GalT2 depletion also led to enhanced apoptosis; however, this does not account for the phenotypic abnormalities, as blockade of apoptosis failed to compensate for the beta4GalT2 depletion. Our data suggest that beta4GalT2 activity is cell-autonomously required in cells undergoing mediolateral cell intercalation, which drives extension movements during medaka gastrulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SFRP1 is required for the proper establishment of the eye field in the medaka fish

Secreted Frizzled Related Proteins (SFRPs) are a family of soluble molecules structurally related to the Wnt receptors. Functional analysis in different vertebrate species suggests that these molecules are multifunctional modulators of Wnt and possibly other signalling pathways. Sfrp1 a member of this family, is strongly expressed throughout embryonic development in different vertebrate species...

متن کامل

Expression of guanylyl cyclase genes in medaka hybrids (Oryzias curvinotus x Oryzias latipes).

The Hong Kong-originated medaka fish Oryzias curvinotus expresses nine genes (OcGC1 approximately OcGC8 and OcGC-R2) for membrane guanylyl cyclases (membrane GCs) and three genes (OcGCS-alpha(1), OcGCS-alpha(2), and OcGCS-beta(1)) for soluble GC subunits. The deduced amino acid sequences of membrane GCs expressed in O. curvinotus were quite similar to those expressed in the Japanese medaka Oryz...

متن کامل

Dazl is a critical player for primordial germ cell formation in medaka

The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the pres...

متن کامل

Identification of two teleost homologs of the Drosophila sex determination factor, transformer-2 in medaka (Oryzias latipes)

Transformer-2 (Tra2), an RNA-binding protein, is an important regulator in Drosophila sex determination. In vertebrates, however, the role of Tra2 homologues is not known. We identified two teleost homologues of Tra2, which we named Tra2a and Tra2b, in medaka (Oryzias latipes). Furthermore, we demonstrated that both Tra2 mRNAs were predominantly expressed in germ cells of both sexes before the ...

متن کامل

Disruption of dmc1 Produces Abnormal Sperm in Medaka (Oryzias latipes)

DMC1 is a recombinase that is essential for meiotic synapsis. Experiments in extensive species of eukaryotes have indicated the independent role of DMC1 in repairing double strand breaks (DSBs) produced during meiosis I. Mutation of dmc1 in mice and human often leads to obstacles in spermatogenesis and male sterility. Here, we report on the disruption of dmc1 in male medaka (Oryzias latipes). S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2009